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Resistive skin biosensors refer to a class of imperceptible wearable
devices for health monitoring and human-machine interfacing, in

which conductive materials are deposited onto or incorporated into
an elastomeric polymeric sheet. A wide range of resistive skins has
been developed so far to detect a wide variety of biometric signals

including blood pressure, skin strain, body temperature and acoustic
vibrations; however, they are typically non-specific, with one resistive
signal corresponding to a single type of biometric data (one-mode
sensors). Here we show a hierarchically resistive skin sensor made of a
laminated cracked platinum film, vertically aligned gold nanowires and
apercolated gold nanowire film, all integrated into a single sensor. As a
result, hierarchically resistive skin displays a staircase-shaped resistive
response to tensile strain, with distinct sensing regimes associated toa

specific active material. We show that we can, through one resistive signal,
identify up to five physical or physiological activities associated with the
human throat speech: heartbeats, breathing, touch and neck movement
(thatis, amultimodal sensor). We develop a frequency/amplitude-based
neural network, Deep Hybrid-Spectro, that can automatically disentangle
multiple biometrics from a single resistive signal. This system can classify
11 activities—with different combinations of speech, neck movement and
touch—withanaccuracy 0f 92.73 + 0.82% while simultaneously measuring
respiration and heart rates. We validated the classification accuracy of
several biometrics with an overall accuracy of >82%, demonstrating the
generality of our concept.

Biological worlds are naturally intelligent systems, whereas electronics
areartificially intelligent systems. The two types of systems are distinct
and incompatible. Emerging soft electronics have the potential to
serve as second-skin-like wearable patches' for monitoring human
health vitals*®, designing perception robotics® and bridging inter-
actions between natural and artificial intelligence (NI-Al)”. Human

throat skin is unique in that it is related to multiple biometrics such
as speech, heart and respiration rates, neck movement and tactile
finger touch; however, a convergent NI-Al system cannot be realized
with traditional sensors that are bulky and rigid, and incompliant to
throat skin®. The emerging skin-like wearable piezoelectric’, capaci-
tive'®, triboelectric'*and resistive” sensors can potentially overcome
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Fig.1|Bio-inspired HR-skin-neuron network sensory processing framework.
a, Schematic of the wearable HR skin as a single biosensor to report multiple
biometrics including physical (speech, neck motion and tactile) and

Multiple biometrics

physiological (respiration and heart rates) information. b, Framework of our HR
skin sensory system to disentangle a single resistive signal into multiple classified
biometrics via our data process and DeepHS.

this challenge. In particular, resistive skins can combine ultrathinness
with facile device integration, and hence offer a simple yet efficient
approach to fabricate electronic skins' and tattoos>>'* for detecting
various biometric signals such as pressure”, strain'®, temperature’®
and acoustic vibration®.

Despite encouraging advances, the current soft electronic sen-
sors are still largely non-specific and single-modal—mismatching the
human skinsensory system, which is multimodal and highly specific®.
Although multiple types of wearable sensing patches/tattoos may be
used, they areimpractical given the enormous pixels required to seam-
lessly connect naturally and artificially intelligent systems.

Here we report on a hierarchically resistive (HR) skin that can
overcome the aforementioned challenges—offering the ability to dis-
entangle asingle resistive signal into multiple types of biometric data.
This HR skinwas devised to have threeresistive skin layers with unique
resistivity and stretchability, but sharing common leads to minimize
the number of pixels required (Fig. 1a), which could be realized with
low-resistivity cracked platinum film, medium-resistivity vertically
aligned gold nanowires (v-AuNWs) and high-resistivity ultrathin gold
nanowires (u-AuNWSs). Such fabricated HR skins exhibited distinct
staircase-shaped electrical responses and linearity in three differ-
ent strain ranges, leading to identification of five physical/psycho-
logical activities (speech, heart and respiration rates, touch and neck
movement) when worn on the throat. The single resistive data could

be disentangled and classified into 11 specific real-world activities
with an overall accuracy of 92.73 + 0.82% by our multimodal Deep
Hybrid-Spectro (DeepHS)—a custom signal processing and convolu-
tional neural network (CNN) framework (Fig. 1b). We believe that the
HR skin concept offers a promising solution to establish convergent
NI-Alsystems for broad applicationsin future remote healthcare, soft
robotics and human-machine interactions.

Design principles

Figure 2aillustrates an example of awearable on-throat HR skin sensor,
whichis composed of cracked platinum film, v-AuNWs and u-AuNWs
sandwiched from top to bottom sequentially with polydimethylsilox-
ane (PDMS) layers in between. The overall device was flexible with a
thickness of ~118 pm (Fig. 2b,c). The respective internal structures of
theactive layers were confirmed viatransmission electron microscopy
characterizations of microtomed samples (Fig. 2d-f).In a typical HR
skin sensor, platinum, v-AuNWs and u-AuNWs had sheet resistances
0f25.2+6.4Qsq",4.9+1.7kQsq " (refs.16,19) and 2.0 + 0.9 MQ sq ™
(ref. 21), respectively (Supplementary Fig. 1).

Our proposed HR design concept requires not only a staircase-like
resistance profile, but also distinct sensitivity for each active layer,
namely, high conductivity and high sensitivity for the top layer;
medium conductivity and medium sensitivity for the middle layer;
and low conductivity and low sensitivity for the bottom layer. To
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Fig.2|Structure design, characterization and working principles of the HR
skin. a, Schematic illustration of the structure of the HR skin. EGaln refers to
Eutectic gallium-indium. b, Photograph of the HR skin. Scale bar, 2 mm.

¢, Cross-sectional scanning electron microscope (SEM) image of the HR skin.
Scale bar, 20 pm. d-f, Transmission electron microscopy images of the cross-
sectional view of cracked platinum (top layer, d), v-AuNWSs (middle layer, e) and
u-AuNWs (bottom layer, f). Scale bars, 50 nm (d), 200 nm (e) and 50 nm (f).

g, Theresistance changes of each individual layer in the 0-50% strain range.

B

Large strain (35-50%)

Medium strain (3-35%)

h, Theresistance changes of HR skin comprising bilayers of cracked platinum
film/u-AuNWs, and trilayers of cracked platinum film/v-AuNWs/u-AuNWs, in the
0-50% strain range. i, Comparison of dynamic gauge factors between HR skin
and other resistive electronic skins in the literature'>'**?°, CNT refers to carbon
nanotube.j, The sensing mechanism of the trilayer HR skin. i,, i, and i. are defined
asthe current passing through the top, middle and bottom layers, respectively,
when a constant voltage is applied.

achieve this, we carefully investigated the conductivity, sensitivity and
stretchability of each layer by fine tuning their respective thicknesses
(Supplementary Figs. 2-4). We found that 20 nm cracked platinum
exhibited the highest sensitivity of the thicknesses between 20 and
60 nm (Supplementary Fig. 2b). As for the v-AuNWs, films with agrowth
time of 1 min showed distinct conductivity compared with cracked
platinum (Supplementary Fig. 3a). Finally, double-layer u-AuNWs were
chosen due to their stable and distinct conductivity compared with
v-AuNWs (Supplementary Fig. 4a). Thus, 20 nm cracked platinum (Sup-
plementaryFig. 5),1-min-growth-time v-AuNWs (Supplementary Fig. 6)
and double-layer self-assembled thin film u-AuNWs (Supplementary
Fig.7) were chosen for the design of the HR skin sensor, with resistances
0f10%-10* Q,10*-10° Q and 10°-10’ Q, within 0-50% strain, respectively
(Fig.2g).

Withthis design, the HR skin conductor displayed staircase-shaped
resistance changesto tensile strains, with high linearity in the specific
small (¢ =0-3%), medium (¢ =3-35%) and high (£ =35-50%) strain

regimes (Fig. 2h, openred circles). Asaresult, our HR skin maintained
an ultrahigh gauge factor of >10? with respect to a full strain range of
0.01-50% (Fig. 2i, filled red spheres), which has not been achieved
by a single resistive sensor in the literature'$?>2°, The high sensi-
tivity and specificity of our HR skin enable identification of specific
signals associated with different types of throat activities includ-
ing vocal cords vibration, carotid artery pulsing, respiration and
neck movement.

The working principle of the HR skinis illustrated in Fig. 2j. When
aconstantvoltageis applied to the sensing circuit, the majority of the
redox current would pass through the low-resistivity top platinum
layer when asmalltensile strain (¢ = 0-3%) isapplied. At medium strain
(3-35%), the top platinum layer will be electrically non-conductive,
thereby activating the medium-resistivity v-AuNW layer. Further
increasing the strain to >35% will block electron transport in both
the top and middle layers, in which the high-resistivity u-AuNW layer
dominates the overall current.
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Specific responses to acoustic forces, pressure
and strains

Compared with the literature’>*°~*2, we found that our wearable
on-throat HR skin displayed high specificity, and could therefore
identify specific pressure, tensile strain and acoustic vibration. To
demonstrate this, a pressing probe, an actuating moving stage and a
speaker were located at the top, side and bottom of the suspended HR
skin, respectively (Fig. 3a). The device exhibited stable and periodic
electrical output across a50-1,000 Hz frequency range, showing a
rapidly reducing trend before 200 Hz followed by agradually decreas-
ing trend withlittle fluctuationin the range 0of200-1,000 Hz (Fig. 3b).
The acoustic sensitivity can be calculated using equation (1):

5 R=Ro)/Ry @
Py x 1050120

where R and R, are the resistances of the sensor before and after
acoustic vibration, respectively, Pis the reference sound pressure of
2x107°Pa, and L, is the sound pressure level in decibels. The acoustic
sensitivity of the device reached 0.33 Pa™ at a constant frequency of
200 Hz and specific distance of 1 mm with the sound source (Fig. 3¢),
which gradually decreased with an increase in the speaker-sensor
distance. Note that acoustic vibration only triggered small resistive
changes, indicating the top platinum layer dominates.

By contrast, we found that the middle v-AuNW layer governed
the specificresistive responses to the tensile strain in the 5-35% range
(Fig. 3d), displaying high linearity with an averaged gauge factor
of 2,111.2 (Fig. 3e). The cyclic resistance changes under a stretch-
ing frequency of 0.25 Hz were stable and uniform at various strains
(Fig. 3f). Furthermore, the resistance amplitude was independent of
the stretching frequencies (Supplementary Fig. 8). With the specific
strains of 0.02% and 0.8% applied, fast response times of 9 and 12 ms
were achieved, respectively (Supplementary Fig.9).

Next, pressure inthe10-100 kParange was applied toour HR skinin
thevertical direction, mimicking skin touch force fromgentle to forceful
(Fig.3g). We found amuch more substantial resistive response (Fig. 3h),
indicatingthe dominant role of the bottom u-AuNW layer. A high sensi-
tivity of 106.6 kPa was achieved with an excellent signal-to-noise ratio
(SNR) in response to specific dynamic pressures (Fig. 3i).

We further applied tensile and acoustic loads simultaneously
(Fig. 3j), which activated both the top platinum and middle v-AuNW
layers. We compared the resistive response with dynamic strain only,
and with strain plus acoustic vibration. The profilesin both conditions
were almost the same (Fig. 3k), indicating that the tensile strainsignal is
not affected by the additional acoustic vibration stimuli. Nevertheless,
FFT analysisrevealed aninput frequency of200 Hz (Fig. 31), which was
absent for the strain-only sample. We note the acoustic signal faded
for strains >4% (inset of Fig. 3k), possibly due to the electrical failure
ofthe cracked platinum layer. Similarly, our HR skin could also pick up
tiny acoustic and large pressure signals simultaneously (Fig. 3m-o).

Durability and throat activities recognition

Our HR skin displayed durable staircase-shaped electrical responses
to various strain levels (Supplementary Fig. 10). There was a negligi-
ble deterioration in signal quality even after 500 continuous stretch-
release cycles. The HR skin also responded steadily and reversibly,
with large strains of up to 50% for more than 1,000 continuous cycles
(Supplementary Fig. 11), proving that the electrical failure of the top
and middle layers did not affect the electrical durability of the device.
This agrees with our structural characterizations: the individual active
layers of the HR skin displayed reversible morphological recovery fol-
lowing 50% strain release (Supplementary Fig.12). The laminated active
materials were very thin, which did not alter the mechanical properties
of PDMS (Supplementary Fig.13). The plasma treated surfaces offered
strong interfacial bonding forces against delamination even at 50%

strain (Supplementary Fig. 14). Furthermore, the HR skin, as a well
encapsulated and skin-compatible device, was also chemically stable.
Negligible performance degradation was recorded, even after being
soakedintheartificial perspiration and undergoing 1,000 continuous
stretch-release cycles (Supplementary Fig. 15).

We further applied our HR skin to specifically detect a variety
of throat-related activities (Fig. 4a,b). Initially, the male volunteer
breathed normally under the static conditions. The large respiration
peaks and small pulse peaks were clearly identified with averaged peak
amplitudes of 0.18 £ 0.05 and 0.012 + 0.003, respectively (Fig. 4c).
Afterwards, the volunteer started to speak. Remarkably, the speaking
regions could be accurately identified simply via short-time Fourier
transform (STFT) analysis (Fig. 4b). We could clearly see the individual
acoustic vibration peaks overlaid on top of the large respiration and
pulse peaks (Fig. 4d) with a distinct voice/no-voice boundary area
(Fig.4e). Note that high-frequency acoustic signals were not detected
by asingle u-AuNW layer due toits low sensitivity at low levels of strain
(0-3%) (Supplementary Fig. 16). Finally, three neck stretching move-
ments were applied, leading to substantial, ~1,000-fold resistance
changes—equivalenttoatensile strain of >35% (Fig.4b). This activated
the u-AuNW layer and deactivated both the top platinum and middle
v-AuNW layers.

We further compared the HR skin with individual platinum,
v-AuNW and u-AuNW sensors in response to carotid artery pulsing,
breathing, speech, neck movement and touch (Fig. 4f). Evidently,
the cracked platinum sensor dominated in the small strain range
(0% < £ < 3%)—exhibiting similar resistance changes and SNR levels to
our HR skin—but failed to detect neck movement and touch due to its
limited stretchability. The v-AuNWs could detect the neck flexion, but
not for carotid artery pulsing, breathing and speaking. The u-AuNWs
sensor responded stably to neck movement and finger touch, but failed
to detect small strains induced by speech, breathing and pulsing. By
contrast, only the HR skin showed reliable responses towards all five
throat-related activities with distinct amplitude and SNR (Fig. 4f).

Moreover, the HR skin showed distinct signal patterns in response
to deep, normal and mild breaths (Supplementary Fig. 17). As for the
neck movements, shaking the head in the horizontal direction would
resultinlarge sensor resistance changesin the order of10'-10?, falling
into the sensitivity range of the middle v-AuNW layer (Supplemen-
tary Fig. 18). Nodding of the head exhibited a >10-times-smaller peak
amplitude (Supplementary Fig. 18), falling in the strain range of the
top platinum layer. This observation might have originated from the
vertically aligned cracks of the platinum film, leading to suppressed
sensitivity in response to strains in vertical direction and enhanced
sensitivity with strains in horizontal direction™®.

Classification model

Ourtask involves real-world collected signals with artefacts, for which a
standard off-the-shelf machinelearning framework would fail easily. The
existing algorithms™* are not able to simultaneously solve the problem
of rate detection and activity classification, and cannot navigate our
diverse signal changes. We therefore developed the custom signal pro-
cessingand CNN framework, DeepHS, to classify various throat activities,
taking advantage of the amplitude characteristic of the raw signal and
the pixel relations of its two-dimension spectrogram. For dection of the
heart and respiration rates, a bandpass filter was applied to the entan-
gled data for rejecting the irrelevant frequencies (Fig. 5a). As shown in
Supplementary Fig. 19, the bandpass filters of the heart and respiration
rates were setinthe 0.5-3 Hzand 0.1-0.5 Hz, ranges, respectively, after
validating the accuracy of our calculation using areference device. This
is consistent with the filter range used in the literature®®. The heart and
breathing rates canbe calculated by peaks number under adaptive thresh-
olds (Supplementary Section 4a) over its time duration (Supplementary
Fig.20). We further checked its robustness performanceindifferent situ-
ations by adding spoken noises and neck motions both separately and
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Fig.3|Mechano-electrical performance characterization of the HR skin
under acoustic, strain and pressure stimulations. a, Schematicillustration

of experimental set-up when the HR skin is under acoustic stimulation.

b, Resistance changes of the HR skin under acoustic stimulation in the human
vocal range (100-1,000 Hz). ¢, Acoustic sensitivity of the HR skin with different
sound source distances (1-5 mm) at constant sound frequencies 0of 200, 500 and
1,000 Hz, respectively. The error bars refer to the standard deviation on the basis
of three samples (n=3). d-f, Schematic illustration (d), resistance changes (e)
and dynamic cyclic performance (f) of the HR skin when it is under mechanical
tensile strain in the range of human skin deformation (5-35%). g-i, Schematic
illustration (g), resistance changes (h) and dynamic performance (i) of the HR

skin whenitis under mechanical compression in the range of gentle (10 kPa)
to forceful (100 kPa) human touch. j, Schematic illustration of experimental
set-up when the HR skin is under both acoustic and tensile strain stimulation.
k,1, Comparison of dynamic performance (k) and fast Fourier transform (FFT)
analysis (I) of HR skin with (top) and without (bottom) acoustic stimulation
(200 Hz) whenitis under 0-5% tensile strain. m, Schematic illustration of
experimental set-up when the HR skin is under both acoustic and compressive
pressure stimulation. n,0, Comparison of dynamic performance (n) and FFT
analysis (0) of HR skin with (top) and without (bottom) acoustic stimulation
(200 Hz) wheniitis under compressive pressure of 10 kPa. Data are presented as
meanvalues £s.d.
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Fig. 4 | Performance evaluation to monitor multilevel throat activities.

a, Schematic of the HR skin attached on human throat. b, The resistance changes
(curve) and the STFT analysis (background) of the hierarchical electronic skin
inresponse to normal breathing only (0-40 s), normal breathing and speech
(40-925s), and neck movement (92-103 s). ¢, The enlarged view of the first 30 s
to demonstrate the combination of respiration (blue) and pulse (red) peaks, no
high-frequency signal is detected in the STFT analysis. d, The enlarged view of
81-85 s to demonstrate the combination of respiration and acoustic vibration
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peaks. The background STFT analysis demonstrates that a high-frequency
speech signalis detected at 82-83 s. e, The enlarged view of the boundary area
before and after speaking. f, The resistance changes and their corresponding SNR
of each layer and the HR skin under different activities including carotid artery
pulsing, breathing, speech, neck movement and finger touch. The error bars refer
tothes.d. of the SNR on the basis of three samples (n = 3). Data are presented as
meanvalues +s.d.
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Fig. 5| Development of DeepHS for classification and recognition of throat
activities. a, Schematic of the entangled data processing, heart and respiration
rate detections, and the associated deep learning architecture. The phase-
dropped spectrogramis extracted from the 1,000 Hz waveform using STFT with
an FFT size of 512, a Hann window length of 512 and a hop length of 256. fc, fully
connected neural network; conv, convolutional layer. b, Testing results of heart
and respiration rate detections in different situations compared with the actual

rates. The error bars refer to the s.d. of the heart and respiration rates on the
basis of six samples (n = 6). ¢, Visualization of 11 throat activities. d, Visualizing
the 1,094 samples of all throat activities by using the UMAP dimension
reduction technique. e, Testing accuracies of neck motions, speech, touch and
combinations of them all. f-h, Receiver operating characteristic curves of the
deep learning-based recognition based on SFTF (f), time-series (g) and fused (h)
models. Data are presented as mean values +s.d.
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simultaneously (Supplementary Figs. 21-23). We found that the estimated
rates would be affected by these artefacts, as respiration and heart rate
peaks would be covered by spoken noises and neck motions; however,
thealgorithm canbe furtherimproved by excluding the speech/motion
time before calculation (Supplementary Figs. 21-23 and Fig. 5b).

Regarding the DeepHS shown in Fig. 5a, we initially trained one
four-layer multilayer perceptron (MLP) and one CNN for classifica-
tion using raw signals and STFT spectrograms, respectively. In the
time-domain MLP, a batch normalization layer and a leaky rectified
linear unit layer were applied sequentially after each linear layer
(t-fc1-t-fc2) to make the training process faster and more stable”,
and also to avoid the zero gradient issue®. In the frequency-domain
CNN, two convolutional layers (convl-conv2) and two fully connected
layers (f-fc1-f-fc2) are followed by a leaky rectified linear unit layer;
additional dropout layers with a 30% dropout value of neurons were
added after these two fully connected layers to alleviate the potential
issue of overfitting. Next, based ontwo pretrained networks, we trained
the third MLP part (fc3-fc4), taking theinput of concatenated outputs
from the second to last layers from these two networks.

Foracquiring our baseline model, the training and testing samples
were randomly selected on the basis of a 8:2 ratio from the baseline
dataset. Fivefold cross-validation was used to estimate its performance.
See Supplementary Section 4b for more information on hyperparam-
eters optimization.

Data collection and performance metrics

We collected a custom dataset comprising 11 classes of spokenwords,
neck motions, touch, and their combinations, including: saying the
words “one”/“two”/“yes”/“no”; nodding or shaking of the head; finger
touch; and combinations of nodding of the head with “yes”/“no”, and
shaking of the head with “yes”/“no” (Fig. 5c). The dataset comprised
1,263 samples, and each sample was composed of the raw signal data of
3 scaptured fromthe HR skin sensor and its corresponding STFT. Due
to theinvariance of voltage across the HR skin sensor, the continuous
current signal was used for classification. Further details on data pre-
processing canbe found inthe ‘Data processing’ sectionin the Methods.

For visualizing the distribution of the baseline dataset, we used
a potent dimension reduction technique named uniform manifold
approximation and projection (UMAP)* (Fig. 5d), which projected
every 3 s signal to atwo-dimension point. These points were grouped
asdifferent clusters based on their similarities. All 11 classes of spoken
words, touch and/or neck motions are presented. Sensors attached to
different neck positions during the collecting process resulted insome
samples having aslightly high frequency and time biases. Hence mild
overlap inevitably existed in some classes based on UMAP. Overall,
the information from both the amplitude and frequency responses
captured by HR skin could still furnish the details of different throat
activities despite this minor flaw.

We evaluated the performance of our classification model by plot-
ting the receiver operating characteristic curve at different discrimi-
native thresholds (Fig. 5f-h). It plots two parameters called the true
positive rate and false positive rate for each threshold, often referred
to as sensitivity and 1-specificity, respectively. It was clear that the
receiver operating characteristic of the fused model performs better
than the other two single models.

Accordingto the experiments, the classification accuracies of the
time- and frequency-domain models (Supplementary Fig. 24) could
reachupto76.28% (+1.25%) and 89.57% (+2.26%), respectively. The final
classification accuracy of the fused model could reach up to 92.73%
(+0.82%) (Fig. 5e). Note that we have performed all kinds of activities
with different forces and rates, including gentle/forceful pressing and
quick/slow nodding/shaking in our dataset (Supplementary Fig. 25).
The classification accuracy of pressing, nodding and shaking is very
high (100%, 96%, 79%) despite of a wide variety of actions, indicating
high specification of our HR skin and high robustness of DeepHS.

We further evaluated the robustness of DeepHS by testing differ-
ent subjects. First, we collected a custom baseline dataset from one
male and one female for generalization between genders. We also
developed a motion artefact-suppressed, suspended layout for data
collection (Supplementary Fig. 26). The final classification accuracy
of this gender-balanced dataset could reach up to 82.68% (+1.44%)
(Supplementary Fig.27). This pretrained model was further fine-tuned
by five participants (three male and two female), whose dataset
(ten for each class) was abided by the ratio of 3:2:5 for the training,
validation and testing sets. The classification accuracy could reach
84.21% (+5.82%) (Supplementary Fig. 28).

We also evaluated the performance when our HR skin was attached
2 cmabove and below the optimized position (Supplementary Fig. 29).
Our artificial intelligence-powered HR skin still maintained a high
accuracy at86.0% and 80.7%, in comparison to 92.3% for the optimized
position, indicating excellent generality and adaptivity of the hierarchi-
cal design and machine learning algorithm despite of misplacement.
Thissatisfactory performanceis also the reason why we decided to take
advantage of the knowledge fromboth time and frequency domains for
the classification tasks. The efficient DeepHS not only closely fits the
data complexity withashortinference time, but also acquire excellent
personalization when the fine-tuning datum s very few.

Visualization

As a proof of concept for potential applications, we demonstrated
the use of our proposed sensor in apple-picking and robotic-assisted
surgery scenarios (Supplementary Videos 1and 2). Ahuman acted as
amaster and a robot acted as a servant. Commands from the human
were recorded by our wearable sensors and transferred to a DeepHS
and the virtual environment through TCP/IP protocol. The human
could make commands by voice or movement. The humanoid robot
receives acommand recognized by DeepHS and reacted accordingly to
assistits master. The heartrates of the human could also be monitored
simultaneously for telehealth purposes.

Conclusion

Human skin receptors are specific yet multimetric. It remains highly
challenging to realize such capability with artificial electronic sen-
sors, in spite of encouraging progress in the burgeoning field of soft
bioelectronics. Inthis Article we have devised a resistive electronic skin
conductor by laminating—from top to bottom—cracked platinum film,
v-AuNWs and u-AuNWs sequentially, with PDMS layers sandwiched
between the active layers. Due to the unique HR properties of each
active layer, the HR skin displayed staircase-like electrical profiles in
response to tensile strains, which could be used to detect multiplex
mechanical stimulisuchas normal pressure, tensile strainand acoustic
vibration. Despite being a single resistive signal, our HR skin could
identify specifichuman throat activities related to vital health signals
(heartand respirationrates), vocal cords vibration and neck movement.
We further developed amachinelearning algorithm, which was able to
disentangle single resistive signals and accurately classify 11 activity
combinations from speech, neck movement and their combinations,
and successfully recognizing several basic humanbehaviours such as
nodding of the head or saying “yes”, and shaking of the head or saying
“no”. We believe that our HR skin offers a promising strategy to fabricate
imperceptive wearable biosensor to bridge natural and artificial intelli-
gence for remote healthcare and seamless human-machineinteraction.

Online content

Any methods, additional references, Nature Portfolio reporting
summaries, source data, extended data, supplementary informa-
tion, acknowledgements, peer review information; details of author
contributions and competing interests; and statements of data
and code availability are available at https://doi.org/10.1038/
$41565-023-01383-6.
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Methods

Chemicals

Gold(lIl) chloride trihydrate, oleylamine, triisopropylsilane (99%),
4-mercaptobenzoic acid, (3-aminopropyl)triethoxysilane, sodium
citrate tribasic dihydrate (99.0%), L-ascorbic acid, polymethyl meth-
acrylate, hexane, liquid metal (Eutectic gallium-indium) and ethanol
(analytical grade) were purchased from Sigma-Aldrich. Polymethyl
methacrylate (PMMA; 950 A6) was purchased from MicroChem. A posi-
tive photoresist AZ 1512 and developer AZ 726 MIF were received from
Microchemicals GmbH. The bare silicon wafer <100> was purchased
fromthe Electronics and Materials Corporation. The PDMS elastomer
base and curing agent (Sylgard 184) were received from Dow Corning.
All solutions were prepared using Millipore Milli-Q water (resistiv-
ity >18 MQ cm™). All chemicals were used as received unless otherwise
indicated. Conductive wires were purchased from Adafruit.

Synthesize of u-AuNWs

Ultrathin gold nanowires were synthesized as described inrefs. 21,40.
Indetail, 44 mggold(lll) chloride trihydrate was added to 40 ml hexane
solution; 1.5 mloleylamine was then added, whichled to the dissolution
ofthe gold salts; and finally triisopropylsilane was added after the gold
salts were fully dissolved. The as-prepared solution was left at ambient
conditions for 24 hwithout stirring until the colour turned from yellow
to dark red due to the formation of ultrathin AuNWSs. The nanowires
solution was collected by repeated centrifugation and thorough wash-
ing with ethanol/hexane (2/1, v/v); it was finally concentrated toa2 ml
stock solution in hexane for further use?*°.

Fabrication of v-AuNWs/PDMS thin film

The v-AuNWs were fabricated on the basis of amodified seed-mediated
approach’®. First, 2 nm gold seeds were synthesized through mixing
0.25ml25 x 102 M gold(Ill) chloride trihydrate and 0.147 mi3.4 x 102 M
sodium citrate in a conical flask with 20 ml H,0 under vigorous stir-
ring; 1 min later, 600 pl of ice-cold 0.1 M NaBH, solution was added to
the solution, which was stirred for 5 min until the colour turned from
light yellow to red. The gold seed solution was stored in the fridge at
4 °Cuntil needed. To fabricate a patterned photomask for the growth
of v-AuNWs, a thin PMMA layer was first spin-coated onto a bare sili-
con wafer at 3,000 r.p.m. for 45 s, followed by baking at 180 °C for
2 min. The photoresist was then spin-coated on top of PMMA layer at
3,000 r.p.m.for 45 s; v-AuNW patterns were formed via a conventional
photolithography process. To grow v-AuNWs, the exposed PMMA
surface was treated with oxygen plasma for 5 min. The silicon wafer
was thenimmersedina5 x 107> M (3-aminopropyl)triethoxysilane etha-
nol solution for 2 h to functionalize the surface with an amino group.
After twicerinsing with ethanol, the amino-functionalized surface was
immersed into citrate-stabilized gold seed solution for 2 h, followed by
rinsing with water twice to remove excess seed particles. Finally, the
gold seed-modified substrates were immersed in a growth solution
with 9.8 x 10 M 4-mercaptobenzoicacid, 1.2 x 10> M gold(lll) chloride
trihydrate and 2.9 x 102 M L-ascorbic acid for 1-5 min, leading to the
formation of v-AuNWs thin films. After the growth of the v-AuNWs,
the PDMS base and curing agent were mixed (w/w =10:1, consistent
throughout the paper unless otherwise indicated) and spin-coated
on top of the v-AuNW thin film at 1,500 r.p.m. for 1 min. After curing
at 80 °Cfor 3 h, the PDMS thin films were sectioned with a scalpel and
peeled off from the substrate.

Fabrication of HR skin

First, HR layer 3 was fabricated by spin-coating the PDMS precursors
onto apetridish at1,500 r.p.m.for 30 s, followed by curation at 60 °C
for 2 h. The assembly of well-defined u-AuNW films was produced
using a modified Langmuir-Blodgett technique’. The u-AuNWs thin
films were prepared at ambient conditions in a9 cm petri dish using
Millipore Milli-Q water as asubphase. Due to the hydrophobic ligands of

u-AuNWs, aself-assembled nanowire thin film can form and fully cover
the water surface after dispersing the u-AuNW suspension onto the
water subphase drop by drop*.. After 3 min equilibration, u-AuNWs thin
films can be transferred onto mask-defined PDMS substrates through
horizontal deposition®. Furthermore, multilayer u-AuNW films (2-5
layers) could be realized by repeating the transfer method described
above. Then, HR layer 2, with through holes at both ends, was bonded
on top of HR layer 3 after 2 min oxygen plasma treatment. HR layer 1
was fabricated by spin-coating the PDMS precursors onto a petri dish
at1,500 r.p.m.for 30 s, followed by sputter coating alayer of platinum
at0.3 nm s™ forup to 3.5 min. Parallel vertical cracks were generated on
the platinum thin film by applying atensile strain of 5% using amotor-
ized moving stage (THORLABS Model LTS150/M). Both ends of HR
layer 1were punched with through holes and laminated onto HR layer
2 enhanced by plasmabonding. Finally, a thin PDMS layer (spin-coating
at1,500 r.p.m.for 30 s) wasbonded on top as encapsulation after wiring
the device with liquid metal and conductive copper wires.

Characteristics of the HR skin

Scanning electron miscroscope images were collected using a FEI
Helios Nanolab 600 focused ion beam microscope (operating voltage
of 5kVand current of 86 pA). Transmission electron microscope images
were characterized with a FEI Tecnai G2 F20 FEGTEM equipped witha
Bruker 30 mm?123 eV windowless silicon drift detector. Optical images
were taken by a Nikon ECLIPSE LV150 microscope with a Nikon Digital
Sight DS-Fil camera. The sheet resistances measurement was taken with
aJandelfour-point conductivity probe with alinear arrayed four-point
head. Totest the electro-strain responses of the HR skinand individual
layers, both ends of the samples were attached to amotorized moving
stage (THORLABS Model LTS150/M). Stretching cycles with a constant
speed were controlled by a computer-based user interface (Thor-
labs APT user), whereas the current/voltage/resistance changes were
measured by a VERSASTAT 3-500 electrochemical system (Princeton
Applied Research). The acoustic sensing was characterized by play-
ing a piece of sound with a constant frequency between 80-1,000 Hz
using aloudspeaker under the sensors at1-5 mm distance. ACompact
Digital Sound Level Meter (Jaycar, QM1589) was fixed near the sen-
sors to measure the sound pressure level around the device. To test
the electro-pressure responses, the samples are suspended on a test
stand (Mark-10, ESM 301L) while amotorized probe with aforce gauge
(Mark-10 series 7-20) was approaching on top to provide a pressure.
The speed and force were controlled by a Mark-10 MESURgauge Plus
software. The plasma treatment was conducted in a Harrick plasma
cleaner atapressure of 500 Pa.

Data collection
Heart and respiration rates: three participants (male 1, 34 years old;
female 1, 33 years old; male 2, 30 years old) were tested with differ-
ent heart and respiration rates of 60-80 beats per minute and 12-20
breaths per minute, respectively. The data are splitinto 1 min segments
and then passed through different bandpass filters for relevant rate
detection. A MightySat Rx Fingertip Pulse Oximeter was used as a
reference device to monitor real heartrate and breath rate.

Eleven classes of throat activities: one male participant (male 1,
34 yearsold) and one female participant (female 1, 33 years old) were
recruited to collect speech, breathing, pulse, movement and press
activity. In each experiment, participants were instructed to sit com-
fortably on the chair while attaching the HR skin onto their throat. The
time-series signals were collected by a VERSASTAT 3-500 electrochemi-
calsystem (Princeton Applied Research). All of the samplesin eachclass
were collected >100 times, with a duration of 5s. The overall dataset
contains 11 classes of activities with 2,011 data samples.

Validation of DeepHS model with different subjects: five par-
ticipants (male 1, 34 years old; male 2, 30 years old; male 3, 27 years
old; female 1, 33 years old; female 2, 30 years old) were recruited to
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collect speech, breathing, pulse, movement and press activity. All of
the samples in each class were collected >10 times, with a duration of
5s.Informed consent was obtained from the participants, all of whom
were volunteers.

Data processing

We employed common data preprocessing techniques before passing
the final signal to the neural network. In the training process, initially,
as each data file we collected contained multiple samples from each
person and based on the characteristics of sample signals, we devel-
oped asegmentation tactic that guaranteed not only allsamples have
the same length (3,000 pointsin 3 s), but also the peak of the current
signalineach sample was ataround 1,500 points, meaningabout 1.5 s.
Then we obtained the frequency response using the STFT algorithm
over each sample. Particularly worth mentioning was that the origi-
nal samples were one-dimension signals, and the STFT samples were
two-dimension phase-dropped spectrograms. Due to the fixed window
function, window size and related padding methods, the resolutions
of the STFT are determined as 257 for the frequency domain and ten
for the time domain.

Visualization
The virtual environment was developed using Unity3D and can be
shared onreasonable request.

Data availability

Allrelevant dataareavailable fromthe authors onreasonable request,
and/orareincluded within the manuscript andits Supplementary Infor-
mation. The machine learning datasets used in this study are available
at https://github.com/XinZ0419/Deep-Hybrid-Spectro. Source Data
are provided with this paper.

Code availability

The code that supports the plots within this paper and other
findings of this study are available at https://github.com/XinZ0419/
Deep-Hybrid-Spectro.
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