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Hierarchically resistive skins as specific and 
multimetric on-throat wearable biosensors

Shu Gong1,6, Xin Zhang    2,3,6, Xuan Anh Nguyen    4, Qianqian Shi1, Fenge Lin1, 
Sunita Chauhan4, Zongyuan Ge2,3,5   & Wenlong Cheng    1 

Resistive skin biosensors refer to a class of imperceptible wearable 
devices for health monitoring and human–machine interfacing, in 
which conductive materials are deposited onto or incorporated into 
an elastomeric polymeric sheet. A wide range of resistive skins has 
been developed so far to detect a wide variety of biometric signals 
including blood pressure, skin strain, body temperature and acoustic 
vibrations; however, they are typically non-specific, with one resistive 
signal corresponding to a single type of biometric data (one-mode 
sensors). Here we show a hierarchically resistive skin sensor made of a 
laminated cracked platinum film, vertically aligned gold nanowires and 
a percolated gold nanowire film, all integrated into a single sensor. As a 
result, hierarchically resistive skin displays a staircase-shaped resistive 
response to tensile strain, with distinct sensing regimes associated to a 
specific active material. We show that we can, through one resistive signal, 
identify up to five physical or physiological activities associated with the 
human throat speech: heartbeats, breathing, touch and neck movement 
(that is, a multimodal sensor). We develop a frequency/amplitude-based 
neural network, Deep Hybrid-Spectro, that can automatically disentangle 
multiple biometrics from a single resistive signal. This system can classify 
11 activities—with different combinations of speech, neck movement and 
touch—with an accuracy of 92.73 ± 0.82% while simultaneously measuring 
respiration and heart rates. We validated the classification accuracy of 
several biometrics with an overall accuracy of >82%, demonstrating the 
generality of our concept.

Biological worlds are naturally intelligent systems, whereas electronics 
are artificially intelligent systems. The two types of systems are distinct 
and incompatible. Emerging soft electronics have the potential to 
serve as second-skin-like wearable patches1–3 for monitoring human 
health vitals4,5, designing perception robotics6 and bridging inter-
actions between natural and artificial intelligence (NI–AI)7. Human 

throat skin is unique in that it is related to multiple biometrics such 
as speech, heart and respiration rates, neck movement and tactile 
finger touch; however, a convergent NI–AI system cannot be realized 
with traditional sensors that are bulky and rigid, and incompliant to 
throat skin8. The emerging skin-like wearable piezoelectric9, capaci-
tive10, triboelectric11,12 and resistive13 sensors can potentially overcome 
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be disentangled and classified into 11 specific real-world activities 
with an overall accuracy of 92.73 ± 0.82% by our multimodal Deep 
Hybrid-Spectro (DeepHS)—a custom signal processing and convolu-
tional neural network (CNN) framework (Fig. 1b). We believe that the 
HR skin concept offers a promising solution to establish convergent 
NI–AI systems for broad applications in future remote healthcare, soft 
robotics and human–machine interactions.

Design principles
Figure 2a illustrates an example of a wearable on-throat HR skin sensor, 
which is composed of cracked platinum film, v-AuNWs and u-AuNWs 
sandwiched from top to bottom sequentially with polydimethylsilox-
ane (PDMS) layers in between. The overall device was flexible with a 
thickness of ~118 μm (Fig. 2b,c). The respective internal structures of 
the active layers were confirmed via transmission electron microscopy 
characterizations of microtomed samples (Fig. 2d–f). In a typical HR 
skin sensor, platinum, v-AuNWs and u-AuNWs had sheet resistances 
of 25.2 ± 6.4 Ω sq−1, 4.9 ± 1.7 kΩ sq−1 (refs. 16,19) and 2.0 ± 0.9 MΩ sq−1  
(ref. 21), respectively (Supplementary Fig. 1).

Our proposed HR design concept requires not only a staircase-like 
resistance profile, but also distinct sensitivity for each active layer, 
namely, high conductivity and high sensitivity for the top layer; 
medium conductivity and medium sensitivity for the middle layer; 
and low conductivity and low sensitivity for the bottom layer. To 

this challenge. In particular, resistive skins can combine ultrathinness 
with facile device integration, and hence offer a simple yet efficient 
approach to fabricate electronic skins14 and tattoos2,15,16 for detecting 
various biometric signals such as pressure17, strain18, temperature16 
and acoustic vibration19.

Despite encouraging advances, the current soft electronic sen-
sors are still largely non-specific and single-modal—mismatching the 
human skin sensory system, which is multimodal and highly specific20. 
Although multiple types of wearable sensing patches/tattoos may be 
used, they are impractical given the enormous pixels required to seam-
lessly connect naturally and artificially intelligent systems.

Here we report on a hierarchically resistive (HR) skin that can 
overcome the aforementioned challenges—offering the ability to dis-
entangle a single resistive signal into multiple types of biometric data. 
This HR skin was devised to have three resistive skin layers with unique 
resistivity and stretchability, but sharing common leads to minimize 
the number of pixels required (Fig. 1a), which could be realized with 
low-resistivity cracked platinum film, medium-resistivity vertically 
aligned gold nanowires (v-AuNWs) and high-resistivity ultrathin gold 
nanowires (u-AuNWs). Such fabricated HR skins exhibited distinct 
staircase-shaped electrical responses and linearity in three differ-
ent strain ranges, leading to identification of five physical/psycho-
logical activities (speech, heart and respiration rates, touch and neck 
movement) when worn on the throat. The single resistive data could 
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achieve this, we carefully investigated the conductivity, sensitivity and 
stretchability of each layer by fine tuning their respective thicknesses 
(Supplementary Figs. 2–4). We found that 20 nm cracked platinum 
exhibited the highest sensitivity of the thicknesses between 20 and 
60 nm (Supplementary Fig. 2b). As for the v-AuNWs, films with a growth 
time of 1 min showed distinct conductivity compared with cracked 
platinum (Supplementary Fig. 3a). Finally, double-layer u-AuNWs were 
chosen due to their stable and distinct conductivity compared with 
v-AuNWs (Supplementary Fig. 4a). Thus, 20 nm cracked platinum (Sup-
plementary Fig. 5), 1-min-growth-time v-AuNWs (Supplementary Fig. 6)  
and double-layer self-assembled thin film u-AuNWs (Supplementary 
Fig. 7) were chosen for the design of the HR skin sensor, with resistances 
of 102–104 Ω, 104–105 Ω and 106–107 Ω, within 0–50% strain, respectively 
(Fig. 2g).

With this design, the HR skin conductor displayed staircase-shaped 
resistance changes to tensile strains, with high linearity in the specific 
small (ε = 0–3%), medium (ε = 3–35%) and high (ε = 35–50%) strain 

regimes (Fig. 2h, open red circles). As a result, our HR skin maintained 
an ultrahigh gauge factor of >102 with respect to a full strain range of 
0.01–50% (Fig. 2i, filled red spheres), which has not been achieved 
by a single resistive sensor in the literature13,18,22–29. The high sensi-
tivity and specificity of our HR skin enable identification of specific 
signals associated with different types of throat activities includ-
ing vocal cords vibration, carotid artery pulsing, respiration and  
neck movement.

The working principle of the HR skin is illustrated in Fig. 2j. When 
a constant voltage is applied to the sensing circuit, the majority of the 
redox current would pass through the low-resistivity top platinum 
layer when a small tensile strain (ε = 0–3%) is applied. At medium strain 
(3–35%), the top platinum layer will be electrically non-conductive, 
thereby activating the medium-resistivity v-AuNW layer. Further 
increasing the strain to >35% will block electron transport in both 
the top and middle layers, in which the high-resistivity u-AuNW layer 
dominates the overall current.
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Fig. 2 | Structure design, characterization and working principles of the HR 
skin. a, Schematic illustration of the structure of the HR skin. EGaIn refers to 
Eutectic gallium-indium. b, Photograph of the HR skin. Scale bar, 2 mm.  
c, Cross-sectional scanning electron microscope (SEM) image of the HR skin. 
Scale bar, 20 µm. d–f, Transmission electron microscopy images of the cross-
sectional view of cracked platinum (top layer, d), v-AuNWs (middle layer, e) and 
u-AuNWs (bottom layer, f). Scale bars, 50 nm (d), 200 nm (e) and 50 nm (f).  
g, The resistance changes of each individual layer in the 0–50% strain range. 

h, The resistance changes of HR skin comprising bilayers of cracked platinum 
film/u-AuNWs, and trilayers of cracked platinum film/v-AuNWs/u-AuNWs, in the 
0–50% strain range. i, Comparison of dynamic gauge factors between HR skin 
and other resistive electronic skins in the literature13,18,22–29. CNT refers to carbon 
nanotube. j, The sensing mechanism of the trilayer HR skin. ia, ib and ic are defined 
as the current passing through the top, middle and bottom layers, respectively, 
when a constant voltage is applied.
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Specific responses to acoustic forces, pressure 
and strains
Compared with the literature9–13,30–32, we found that our wearable 
on-throat HR skin displayed high specificity, and could therefore 
identify specific pressure, tensile strain and acoustic vibration. To 
demonstrate this, a pressing probe, an actuating moving stage and a 
speaker were located at the top, side and bottom of the suspended HR 
skin, respectively (Fig. 3a). The device exhibited stable and periodic 
electrical output across a 50–1,000 Hz frequency range, showing a 
rapidly reducing trend before 200 Hz followed by a gradually decreas-
ing trend with little fluctuation in the range of 200–1,000 Hz (Fig. 3b). 
The acoustic sensitivity can be calculated using equation (1):

S = (R − R0) /R0

P0 × 10Lp/20
(1)

where R and R0 are the resistances of the sensor before and after 
acoustic vibration, respectively, P is the reference sound pressure of 
2 × 10−5 Pa, and Lp is the sound pressure level in decibels. The acoustic 
sensitivity of the device reached 0.33 Pa−1 at a constant frequency of 
200 Hz and specific distance of 1 mm with the sound source (Fig. 3c), 
which gradually decreased with an increase in the speaker–sensor 
distance. Note that acoustic vibration only triggered small resistive 
changes, indicating the top platinum layer dominates.

By contrast, we found that the middle v-AuNW layer governed 
the specific resistive responses to the tensile strain in the 5–35% range  
(Fig. 3d), displaying high linearity with an averaged gauge factor 
of 2,111.2 (Fig. 3e). The cyclic resistance changes under a stretch-
ing frequency of 0.25 Hz were stable and uniform at various strains  
(Fig. 3f). Furthermore, the resistance amplitude was independent of 
the stretching frequencies (Supplementary Fig. 8). With the specific 
strains of 0.02% and 0.8% applied, fast response times of 9 and 12 ms 
were achieved, respectively (Supplementary Fig. 9).

Next, pressure in the 10–100 kPa range was applied to our HR skin in 
the vertical direction, mimicking skin touch force from gentle to forceful 
(Fig. 3g). We found a much more substantial resistive response (Fig. 3h),  
indicating the dominant role of the bottom u-AuNW layer. A high sensi-
tivity of 106.6 kPa−1 was achieved with an excellent signal-to-noise ratio 
(SNR) in response to specific dynamic pressures (Fig. 3i).

We further applied tensile and acoustic loads simultaneously 
(Fig. 3j), which activated both the top platinum and middle v-AuNW 
layers. We compared the resistive response with dynamic strain only, 
and with strain plus acoustic vibration. The profiles in both conditions 
were almost the same (Fig. 3k), indicating that the tensile strain signal is 
not affected by the additional acoustic vibration stimuli. Nevertheless, 
FFT analysis revealed an input frequency of 200 Hz (Fig. 3l), which was 
absent for the strain-only sample. We note the acoustic signal faded 
for strains >4% (inset of Fig. 3k), possibly due to the electrical failure 
of the cracked platinum layer. Similarly, our HR skin could also pick up 
tiny acoustic and large pressure signals simultaneously (Fig. 3m–o).

Durability and throat activities recognition
Our HR skin displayed durable staircase-shaped electrical responses 
to various strain levels (Supplementary Fig. 10). There was a negligi-
ble deterioration in signal quality even after 500 continuous stretch–
release cycles. The HR skin also responded steadily and reversibly, 
with large strains of up to 50% for more than 1,000 continuous cycles 
(Supplementary Fig. 11), proving that the electrical failure of the top 
and middle layers did not affect the electrical durability of the device. 
This agrees with our structural characterizations: the individual active 
layers of the HR skin displayed reversible morphological recovery fol-
lowing 50% strain release (Supplementary Fig. 12). The laminated active 
materials were very thin, which did not alter the mechanical properties 
of PDMS (Supplementary Fig. 13). The plasma treated surfaces offered 
strong interfacial bonding forces against delamination even at 50% 

strain (Supplementary Fig. 14). Furthermore, the HR skin, as a well 
encapsulated and skin-compatible device, was also chemically stable. 
Negligible performance degradation was recorded, even after being 
soaked in the artificial perspiration and undergoing 1,000 continuous 
stretch–release cycles (Supplementary Fig. 15).

We further applied our HR skin to specifically detect a variety 
of throat-related activities (Fig. 4a,b). Initially, the male volunteer 
breathed normally under the static conditions. The large respiration 
peaks and small pulse peaks were clearly identified with averaged peak 
amplitudes of 0.18 ± 0.05 and 0.012 ± 0.003, respectively (Fig. 4c). 
Afterwards, the volunteer started to speak. Remarkably, the speaking 
regions could be accurately identified simply via short-time Fourier 
transform (STFT) analysis (Fig. 4b). We could clearly see the individual 
acoustic vibration peaks overlaid on top of the large respiration and 
pulse peaks (Fig. 4d) with a distinct voice/no-voice boundary area  
(Fig. 4e). Note that high-frequency acoustic signals were not detected 
by a single u-AuNW layer due to its low sensitivity at low levels of strain 
(0–3%) (Supplementary Fig. 16). Finally, three neck stretching move-
ments were applied, leading to substantial, ~1,000-fold resistance 
changes—equivalent to a tensile strain of >35% (Fig. 4b). This activated 
the u-AuNW layer and deactivated both the top platinum and middle 
v-AuNW layers.

We further compared the HR skin with individual platinum, 
v-AuNW and u-AuNW sensors in response to carotid artery pulsing, 
breathing, speech, neck movement and touch (Fig. 4f). Evidently, 
the cracked platinum sensor dominated in the small strain range 
(0% < ε < 3%)—exhibiting similar resistance changes and SNR levels to 
our HR skin—but failed to detect neck movement and touch due to its 
limited stretchability. The v-AuNWs could detect the neck flexion, but 
not for carotid artery pulsing, breathing and speaking. The u-AuNWs 
sensor responded stably to neck movement and finger touch, but failed 
to detect small strains induced by speech, breathing and pulsing. By 
contrast, only the HR skin showed reliable responses towards all five 
throat-related activities with distinct amplitude and SNR (Fig. 4f).

Moreover, the HR skin showed distinct signal patterns in response 
to deep, normal and mild breaths (Supplementary Fig. 17). As for the 
neck movements, shaking the head in the horizontal direction would 
result in large sensor resistance changes in the order of 101–102, falling 
into the sensitivity range of the middle v-AuNW layer (Supplemen-
tary Fig. 18). Nodding of the head exhibited a >10-times-smaller peak 
amplitude (Supplementary Fig. 18), falling in the strain range of the 
top platinum layer. This observation might have originated from the 
vertically aligned cracks of the platinum film, leading to suppressed 
sensitivity in response to strains in vertical direction and enhanced 
sensitivity with strains in horizontal direction16.

Classification model
Our task involves real-world collected signals with artefacts, for which a 
standard off-the-shelf machine learning framework would fail easily. The 
existing algorithms33–35 are not able to simultaneously solve the problem 
of rate detection and activity classification, and cannot navigate our 
diverse signal changes. We therefore developed the custom signal pro-
cessing and CNN framework, DeepHS, to classify various throat activities, 
taking advantage of the amplitude characteristic of the raw signal and 
the pixel relations of its two-dimension spectrogram. For dection of the 
heart and respiration rates, a bandpass filter was applied to the entan-
gled data for rejecting the irrelevant frequencies (Fig. 5a). As shown in 
Supplementary Fig. 19, the bandpass filters of the heart and respiration 
rates were set in the 0.5–3 Hz and 0.1–0.5 Hz, ranges, respectively, after 
validating the accuracy of our calculation using a reference device. This 
is consistent with the filter range used in the literature36. The heart and 
breathing rates can be calculated by peaks number under adaptive thresh-
olds (Supplementary Section 4a) over its time duration (Supplementary 
Fig. 20). We further checked its robustness performance in different situ-
ations by adding spoken noises and neck motions both separately and 
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simultaneously (Supplementary Figs. 21–23). We found that the estimated 
rates would be affected by these artefacts, as respiration and heart rate 
peaks would be covered by spoken noises and neck motions; however, 
the algorithm can be further improved by excluding the speech/motion 
time before calculation (Supplementary Figs. 21–23 and Fig. 5b).

Regarding the DeepHS shown in Fig. 5a, we initially trained one 
four-layer multilayer perceptron (MLP) and one CNN for classifica-
tion using raw signals and STFT spectrograms, respectively. In the 
time-domain MLP, a batch normalization layer and a leaky rectified 
linear unit layer were applied sequentially after each linear layer 
(t-fc1–t-fc2) to make the training process faster and more stable37, 
and also to avoid the zero gradient issue38. In the frequency-domain 
CNN, two convolutional layers (conv1–conv2) and two fully connected 
layers (f-fc1–f-fc2) are followed by a leaky rectified linear unit layer; 
additional dropout layers with a 30% dropout value of neurons were 
added after these two fully connected layers to alleviate the potential 
issue of overfitting. Next, based on two pretrained networks, we trained 
the third MLP part (fc3–fc4), taking the input of concatenated outputs 
from the second to last layers from these two networks.

For acquiring our baseline model, the training and testing samples 
were randomly selected on the basis of a 8:2 ratio from the baseline 
dataset. Fivefold cross-validation was used to estimate its performance. 
See Supplementary Section 4b for more information on hyperparam-
eters optimization.

Data collection and performance metrics
We collected a custom dataset comprising 11 classes of spoken words, 
neck motions, touch, and their combinations, including: saying the 
words “one”/“two”/“yes”/“no”; nodding or shaking of the head; finger 
touch; and combinations of nodding of the head with “yes”/“no”, and 
shaking of the head with “yes”/“no” (Fig. 5c). The dataset comprised 
1,263 samples, and each sample was composed of the raw signal data of 
3 s captured from the HR skin sensor and its corresponding STFT. Due 
to the invariance of voltage across the HR skin sensor, the continuous 
current signal was used for classification. Further details on data pre-
processing can be found in the ‘Data processing’ section in the Methods.

For visualizing the distribution of the baseline dataset, we used 
a potent dimension reduction technique named uniform manifold 
approximation and projection (UMAP)39 (Fig. 5d), which projected 
every 3 s signal to a two-dimension point. These points were grouped 
as different clusters based on their similarities. All 11 classes of spoken 
words, touch and/or neck motions are presented. Sensors attached to 
different neck positions during the collecting process resulted in some 
samples having a slightly high frequency and time biases. Hence mild 
overlap inevitably existed in some classes based on UMAP. Overall, 
the information from both the amplitude and frequency responses 
captured by HR skin could still furnish the details of different throat 
activities despite this minor flaw.

We evaluated the performance of our classification model by plot-
ting the receiver operating characteristic curve at different discrimi-
native thresholds (Fig. 5f–h). It plots two parameters called the true 
positive rate and false positive rate for each threshold, often referred 
to as sensitivity and 1-specificity, respectively. It was clear that the 
receiver operating characteristic of the fused model performs better 
than the other two single models.

According to the experiments, the classification accuracies of the 
time- and frequency-domain models (Supplementary Fig. 24) could 
reach up to 76.28% (±1.25%) and 89.57% (±2.26%), respectively. The final 
classification accuracy of the fused model could reach up to 92.73% 
(±0.82%) (Fig. 5e). Note that we have performed all kinds of activities 
with different forces and rates, including gentle/forceful pressing and 
quick/slow nodding/shaking in our dataset (Supplementary Fig. 25). 
The classification accuracy of pressing, nodding and shaking is very 
high (100%, 96%, 79%) despite of a wide variety of actions, indicating 
high specification of our HR skin and high robustness of DeepHS.

We further evaluated the robustness of DeepHS by testing differ-
ent subjects. First, we collected a custom baseline dataset from one 
male and one female for generalization between genders. We also 
developed a motion artefact-suppressed, suspended layout for data 
collection (Supplementary Fig. 26). The final classification accuracy 
of this gender-balanced dataset could reach up to 82.68% (±1.44%) 
(Supplementary Fig. 27). This pretrained model was further fine-tuned 
by five participants (three male and two female), whose dataset  
(ten for each class) was abided by the ratio of 3:2:5 for the training, 
validation and testing sets. The classification accuracy could reach 
84.21% (±5.82%) (Supplementary Fig. 28).

We also evaluated the performance when our HR skin was attached 
2 cm above and below the optimized position (Supplementary Fig. 29).  
Our artificial intelligence-powered HR skin still maintained a high 
accuracy at 86.0% and 80.7%, in comparison to 92.3% for the optimized 
position, indicating excellent generality and adaptivity of the hierarchi-
cal design and machine learning algorithm despite of misplacement. 
This satisfactory performance is also the reason why we decided to take 
advantage of the knowledge from both time and frequency domains for 
the classification tasks. The efficient DeepHS not only closely fits the 
data complexity with a short inference time, but also acquire excellent 
personalization when the fine-tuning datum is very few.

Visualization
As a proof of concept for potential applications, we demonstrated 
the use of our proposed sensor in apple-picking and robotic-assisted 
surgery scenarios (Supplementary Videos 1 and 2). A human acted as 
a master and a robot acted as a servant. Commands from the human 
were recorded by our wearable sensors and transferred to a DeepHS 
and the virtual environment through TCP/IP protocol. The human 
could make commands by voice or movement. The humanoid robot 
receives a command recognized by DeepHS and reacted accordingly to 
assist its master. The heart rates of the human could also be monitored 
simultaneously for telehealth purposes.

Conclusion
Human skin receptors are specific yet multimetric. It remains highly 
challenging to realize such capability with artificial electronic sen-
sors, in spite of encouraging progress in the burgeoning field of soft 
bioelectronics. In this Article we have devised a resistive electronic skin 
conductor by laminating—from top to bottom—cracked platinum film, 
v-AuNWs and u-AuNWs sequentially, with PDMS layers sandwiched 
between the active layers. Due to the unique HR properties of each 
active layer, the HR skin displayed staircase-like electrical profiles in 
response to tensile strains, which could be used to detect multiplex 
mechanical stimuli such as normal pressure, tensile strain and acoustic 
vibration. Despite being a single resistive signal, our HR skin could 
identify specific human throat activities related to vital health signals 
(heart and respiration rates), vocal cords vibration and neck movement. 
We further developed a machine learning algorithm, which was able to 
disentangle single resistive signals and accurately classify 11 activity 
combinations from speech, neck movement and their combinations, 
and successfully recognizing several basic human behaviours such as 
nodding of the head or saying “yes”, and shaking of the head or saying 
“no”. We believe that our HR skin offers a promising strategy to fabricate 
imperceptive wearable biosensor to bridge natural and artificial intelli-
gence for remote healthcare and seamless human–machine interaction.
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Methods
Chemicals
Gold(III) chloride trihydrate, oleylamine, triisopropylsilane (99%), 
4-mercaptobenzoic acid, (3-aminopropyl)triethoxysilane, sodium 
citrate tribasic dihydrate (99.0%), l-ascorbic acid, polymethyl meth-
acrylate, hexane, liquid metal (Eutectic gallium-indium) and ethanol 
(analytical grade) were purchased from Sigma-Aldrich. Polymethyl 
methacrylate (PMMA; 950 A6) was purchased from MicroChem. A posi-
tive photoresist AZ 1512 and developer AZ 726 MIF were received from 
Microchemicals GmbH. The bare silicon wafer <100> was purchased 
from the Electronics and Materials Corporation. The PDMS elastomer 
base and curing agent (Sylgard 184) were received from Dow Corning. 
All solutions were prepared using Millipore Milli-Q water (resistiv-
ity > 18 MΩ cm−1). All chemicals were used as received unless otherwise 
indicated. Conductive wires were purchased from Adafruit.

Synthesize of u-AuNWs
Ultrathin gold nanowires were synthesized as described in refs. 21,40. 
In detail, 44 mg gold(III) chloride trihydrate was added to 40 ml hexane 
solution; 1.5 ml oleylamine was then added, which led to the dissolution 
of the gold salts; and finally triisopropylsilane was added after the gold 
salts were fully dissolved. The as-prepared solution was left at ambient 
conditions for 24 h without stirring until the colour turned from yellow 
to dark red due to the formation of ultrathin AuNWs. The nanowires 
solution was collected by repeated centrifugation and thorough wash-
ing with ethanol/hexane (2/1, v/v); it was finally concentrated to a 2 ml 
stock solution in hexane for further use21,40.

Fabrication of v-AuNWs/PDMS thin film
The v-AuNWs were fabricated on the basis of a modified seed-mediated 
approach16. First, 2 nm gold seeds were synthesized through mixing 
0.25 ml 25 × 10−3 M gold(III) chloride trihydrate and 0.147 ml 3.4 × 10−2 M 
sodium citrate in a conical flask with 20 ml H2O under vigorous stir-
ring; 1 min later, 600 µl of ice-cold 0.1 M NaBH4 solution was added to 
the solution, which was stirred for 5 min until the colour turned from 
light yellow to red. The gold seed solution was stored in the fridge at 
4 °C until needed. To fabricate a patterned photomask for the growth 
of v-AuNWs, a thin PMMA layer was first spin-coated onto a bare sili-
con wafer at 3,000 r.p.m. for 45 s, followed by baking at 180 °C for 
2 min. The photoresist was then spin-coated on top of PMMA layer at 
3,000 r.p.m. for 45 s; v-AuNW patterns were formed via a conventional 
photolithography process. To grow v-AuNWs, the exposed PMMA 
surface was treated with oxygen plasma for 5 min. The silicon wafer 
was then immersed in a 5 × 10−3 M (3-aminopropyl)triethoxysilane etha-
nol solution for 2 h to functionalize the surface with an amino group. 
After twice rinsing with ethanol, the amino-functionalized surface was 
immersed into citrate-stabilized gold seed solution for 2 h, followed by 
rinsing with water twice to remove excess seed particles. Finally, the 
gold seed-modified substrates were immersed in a growth solution 
with 9.8 × 10−4 M 4-mercaptobenzoic acid, 1.2 × 10−2 M gold(III) chloride 
trihydrate and 2.9 × 10−2 M l-ascorbic acid for 1–5 min, leading to the 
formation of v-AuNWs thin films. After the growth of the v-AuNWs, 
the PDMS base and curing agent were mixed (w/w = 10:1, consistent 
throughout the paper unless otherwise indicated) and spin-coated 
on top of the v-AuNW thin film at 1,500 r.p.m. for 1 min. After curing 
at 80 °C for 3 h, the PDMS thin films were sectioned with a scalpel and 
peeled off from the substrate.

Fabrication of HR skin
First, HR layer 3 was fabricated by spin-coating the PDMS precursors 
onto a petri dish at 1,500 r.p.m. for 30 s, followed by curation at 60 °C 
for 2 h. The assembly of well-defined u-AuNW films was produced 
using a modified Langmuir–Blodgett technique1. The u-AuNWs thin 
films were prepared at ambient conditions in a 9 cm petri dish using 
Millipore Milli-Q water as a subphase. Due to the hydrophobic ligands of 

u-AuNWs, a self-assembled nanowire thin film can form and fully cover 
the water surface after dispersing the u-AuNW suspension onto the 
water subphase drop by drop41. After 3 min equilibration, u-AuNWs thin 
films can be transferred onto mask-defined PDMS substrates through 
horizontal deposition21. Furthermore, multilayer u-AuNW films (2–5 
layers) could be realized by repeating the transfer method described 
above. Then, HR layer 2, with through holes at both ends, was bonded 
on top of HR layer 3 after 2 min oxygen plasma treatment. HR layer 1 
was fabricated by spin-coating the PDMS precursors onto a petri dish 
at 1,500 r.p.m. for 30 s, followed by sputter coating a layer of platinum 
at 0.3 nm s−1 for up to 3.5 min. Parallel vertical cracks were generated on 
the platinum thin film by applying a tensile strain of 5% using a motor-
ized moving stage (THORLABS Model LTS150/M). Both ends of HR 
layer 1 were punched with through holes and laminated onto HR layer 
2 enhanced by plasma bonding. Finally, a thin PDMS layer (spin-coating 
at 1,500 r.p.m. for 30 s) was bonded on top as encapsulation after wiring 
the device with liquid metal and conductive copper wires.

Characteristics of the HR skin
Scanning electron miscroscope images were collected using a FEI 
Helios Nanolab 600 focused ion beam microscope (operating voltage 
of 5 kV and current of 86 pA). Transmission electron microscope images 
were characterized with a FEI Tecnai G2 F20 FEGTEM equipped with a 
Bruker 30 mm2 123 eV windowless silicon drift detector. Optical images 
were taken by a Nikon ECLIPSE LV150 microscope with a Nikon Digital 
Sight DS-Fi1 camera. The sheet resistances measurement was taken with 
a Jandel four-point conductivity probe with a linear arrayed four-point 
head. To test the electro-strain responses of the HR skin and individual 
layers, both ends of the samples were attached to a motorized moving 
stage (THORLABS Model LTS150/M). Stretching cycles with a constant 
speed were controlled by a computer-based user interface (Thor-
labs APT user), whereas the current/voltage/resistance changes were 
measured by a VERSASTAT 3–500 electrochemical system (Princeton 
Applied Research). The acoustic sensing was characterized by play-
ing a piece of sound with a constant frequency between 80–1,000 Hz 
using a loudspeaker under the sensors at 1–5 mm distance. A Compact 
Digital Sound Level Meter ( Jaycar, QM1589) was fixed near the sen-
sors to measure the sound pressure level around the device. To test 
the electro-pressure responses, the samples are suspended on a test 
stand (Mark-10, ESM 301L) while a motorized probe with a force gauge 
(Mark-10 series 7–20) was approaching on top to provide a pressure. 
The speed and force were controlled by a Mark-10 MESURgauge Plus 
software. The plasma treatment was conducted in a Harrick plasma 
cleaner at a pressure of 500 Pa.

Data collection
Heart and respiration rates: three participants (male 1, 34 years old; 
female 1, 33 years old; male 2, 30 years old) were tested with differ-
ent heart and respiration rates of 60–80 beats per minute and 12–20 
breaths per minute, respectively. The data are split into 1 min segments 
and then passed through different bandpass filters for relevant rate 
detection. A MightySat Rx Fingertip Pulse Oximeter was used as a 
reference device to monitor real heart rate and breath rate.

Eleven classes of throat activities: one male participant (male 1, 
34 years old) and one female participant (female 1, 33 years old) were 
recruited to collect speech, breathing, pulse, movement and press 
activity. In each experiment, participants were instructed to sit com-
fortably on the chair while attaching the HR skin onto their throat. The 
time-series signals were collected by a VERSASTAT 3–500 electrochemi-
cal system (Princeton Applied Research). All of the samples in each class 
were collected >100 times, with a duration of 5 s. The overall dataset 
contains 11 classes of activities with 2,011 data samples.

Validation of DeepHS model with different subjects: five par-
ticipants (male 1, 34 years old; male 2, 30 years old; male 3, 27 years 
old; female 1, 33 years old; female 2, 30 years old) were recruited to 
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collect speech, breathing, pulse, movement and press activity. All of 
the samples in each class were collected >10 times, with a duration of 
5 s. Informed consent was obtained from the participants, all of whom 
were volunteers.

Data processing
We employed common data preprocessing techniques before passing 
the final signal to the neural network. In the training process, initially, 
as each data file we collected contained multiple samples from each 
person and based on the characteristics of sample signals, we devel-
oped a segmentation tactic that guaranteed not only all samples have 
the same length (3,000 points in 3 s), but also the peak of the current 
signal in each sample was at around 1,500 points, meaning about 1.5 s. 
Then we obtained the frequency response using the STFT algorithm 
over each sample. Particularly worth mentioning was that the origi-
nal samples were one-dimension signals, and the STFT samples were 
two-dimension phase-dropped spectrograms. Due to the fixed window 
function, window size and related padding methods, the resolutions 
of the STFT are determined as 257 for the frequency domain and ten 
for the time domain.

Visualization
The virtual environment was developed using Unity3D and can be 
shared on reasonable request.

Data availability
All relevant data are available from the authors on reasonable request, 
and/or are included within the manuscript and its Supplementary Infor-
mation. The machine learning datasets used in this study are available 
at https://github.com/XinZ0419/Deep-Hybrid-Spectro. Source Data 
are provided with this paper.

Code availability
The code that supports the plots within this paper and other  
findings of this study are available at https://github.com/XinZ0419/
Deep-Hybrid-Spectro.
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